P 1

SF, le 29/04/2014

<u>N/Réf</u> : **AB – Dr. L. TIKANA 14-10**

Destinataire : Dr. TIKANA

Confidentialité : CONFIDENTIEL

Copie:Dr. J.-M. WELTER

Archivage CopperCEEF

Comparative corrosion results of four leaded & lead-free copper base alloys

(ELV Automotive project.)

Dr. A. BORHAN

<u>1 – Objet</u>

Within the frame of the "ELV - Automotive project", CopperCEEF has been charged to perform comparative corrosion, metallographic and finally roughness tests on four copper base alloys.

Galvanic corrosion and Stress Corrosion Cracking (SCC) tests have been considered for comparison. This report provides the experimental conditions together with the results of each test.

<u>2 – Experimental</u>

A – Alloys tested

The four alloys tested are presented in **table 1**.

	1	2	3	4
Symbol	CuZn39Pb3	CuZn42	CuZn21Si3P	CuZn38As
Number	CW614N	CW510L	CW724R	CW511L

Table 1

B - SCC tests

The tests have been performed using the two following **ISO international standards**:

ISO 7539-4 and ISO 7539-7

The operating conditions used are summerised in table 2.

CopperCEEF	RAPPORT D'EXPERTISE
Sérifontaine	

Strain rate (s ⁻¹)	Temperature (°C)	РН	Corrosion solution concentration (ppm = µg/l)
10 ⁻⁶	19.5 ± 0.5	4	200

Table	2
-------	---

Two corrosion solutions including: NaCl and Na2SO4, have been considered.

In order to evaluate the susceptibility to stress corrosion cracking, we have used the low strain rate tensile test. Tests were first performed in air and then in contact with a corrosive environment.

In each case the total plastic strain \mathcal{E}_p (see **figure 1**) was determined before calculating the Coefficient of Sensitivity to Stress Corrosion Cracking (C_{SCC}) as follows:

Round machined specimens with threaded ends were used. The dimensions of the specimens used are given in **figure 2**.

L=230 mm -

The following calculation based on the gage length (L = 25mm), let calculate the constant speed of the crosshead of the tensile machine to be used in order to apply a strain rate of 10^{-6} s⁻¹ to the sample:

$$\hat{\mathbf{\varepsilon}}$$
 (s⁻¹) = [V(mm/min) / (L * 60)]

[**Eq. 2**]

Where:

V = The speed of the crosshead (mm/min),

L = Gage length of the sample (25 mm).

Replacing the value of L, in [Eq. 1], gives:

V = 0.0015 mm/min

Despite its very low level, the crosshead speed of the tensile machine was highly constant; As an example, **figure 3** shows the acquisition data performed during a real SCC test. A perfect linear relationship is found between the crosshead displacement and time; The slope of the linear graph is precisely 25×10^{-6} mm/s (= 0.0015 mm/min) **throughout the test duration**.

Machined samples were degreased prior to tests.

<u>3 – Results</u>

A – SCC tests

The stress-strain curves for different alloys as well as different environments (air, Na2SO4 and NaCl) are grouped in **appendix 1**.

CopperCEEF	RAPPORT D'EXPERTISE	P 4
Sérifontaine		

Figure 3

The calculated values of C_{SCC} are presented in **table 3**.

	NaCl	Na2SO4
CuZn42	0,23	0,13
CuZn39Pb3	0,29	0,17
CuZn21Si3	0,98	1,1
CuZn38As	0.99	1.0

Table	3
-------	---

The C_{SCC} results of **table 3** are graphically shown by **figure 4**. The total plastic strains used to calculate the C_{SCC} values are graphically shown in **figure 5**.

The results presented in **figures 5** and **6** lead to the following conclusions:

1) The comparison of the C_{SCC} values between CuZn39Pb3 and CuZn42 suggests that the presence of lead in the brass would slightly improve the resistance to the SCC phenomenon.

CopperCEEF

Figure 5

CopperCEEF

<u>N/Réf</u>: AB – Dr. L. TIKANA 14-10 date: 29/04/2014

- 2) Compared with the NaCl, the Na2SO4 is a more corrosive environement.
- 3) For both of the corrosives environements examined, the preponderant factor for the SCC, is the PH of the solution; The concentration of the solution appears not to have a significant influence on the C_{SCC} level (within the frame of experimental conditions used).

B – Roughness tests

The results of the longitudinal roughness measurements (Ra and Rz) performed on the gage lengh of the machined samples are presented in **table 4** and **figures 6** and **7**.

The best results are obtained for the CuZn39Pb3 and the worse for the CuZn42.

	Ra		Rz	
	Average	S.D.	Average	S.D.
CuZn42	1,39	0,04	7,27	0,32
CuZn39Pb3	0,17	0,01	1,85	0,16
CuZn21Si3	0,75	0,13	4,24	0,31
CuZn38As	0,51	0,03	2,9	0,3

Table	4
-------	---

Comparison of the roughness measurements of machined brasses

Figure 6

Cop	perCEEF
-----	---------

<u>N/Réf</u>: AB – Dr. L. TIKANA 14-10 date: 29/04/2014

C – Microstructure

Figure 8 to 11 show the optical micrographs of the four lead-free alloys.

As far as the scattered SCC results obtained for the CW614N leaded brass, it appears that the main origin is the microstructure variations of the alloy.

<u>N/Réf</u>: AB – Dr. L. TIKANA 14-10 date: 29/04/2014

Figure 12 shows the microstructures (with the same magnification) of two CW614N samples with différent SCC results; The phase distribution (morphology, percentage, ...) of the two alloys are significantly different and should be the major origin of the SCC scattering.

It is important to note that the morphology as well as the size distribution of each phase can significantly modify the surface as well as the bulk properties of the leaded brasses.

Consequently, the machinability (chips breakage, surface roughness, machining force,...) as well as the corrosion behavior (dezincification, SCC, ...) can be directly influenced by the microstructure parameters.

CopperCEEF

RAPPORT D'EXPERTISE

P 9

Figure 8

Sérifontaine

CW614N

100 um

50 µm

CopperCEEF

RAPPORT D'EXPERTISE

P 10

Figure 9

Sérifontaine

200 un

RAPPORT D'EXPERTISE

P 13

Figure 12

Sérifontaine

<u>N/Réf</u> : AB – Dr. L. TIKANA 14-10 date: 29/04/2014

100 µm

100 µm

CopperCEEF	RAPPORT D'EXPERTISE	P 14	
Sérifontaine			

APPENDIX 1

P 15

CopperCEEF	RAPPORT D'EXPERTISE	P 16
Sérifontaine		

CuZn39Pb3 (CW614N) - NaCl 200ppm PH=4 tests

CopperCEEF	RAPPORT D'EXPERTISE	P 17
Sérifontaine		

CopperCEEF

CopperCEEF	RAPPORT D'EXPERTISE	P 19
Sérifontaine		

CopperC	EEF
---------	-----

oopperorri

CopperCEEF	RAPPORT D'EXPERTISE	P 25
Sérifontaine		

CopperCEEF	RAPPORT D'EXPERTISE	P 26
Sérifontaine		

CuZn21Si3P (CW724R) - Na2SO4 200ppm PH=4 tests

Strain (%)